10,333 research outputs found

    CO2_2 Infrared Phonon Modes in Interstellar Ice Mixtures

    Full text link
    CO2_2 ice is an important reservoir of carbon and oxygen in star and planet forming regions. Together with water and CO, CO2_2 sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO2_2 ice spectroscopy is a prerequisite to characterize CO2_2 interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO2_2 longitudinal optical (LO) phonon mode in pure CO2_2 ice and in CO2_2 ice mixtures with H2_2O, CO, O2_2 components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of JWST, this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible

    CO diffusion and desorption kinetics in CO2_2 ices

    Full text link
    Diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2_2 ice at low temperatures (T=11--23~K) using CO2_2 longitudinal optical (LO) phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick's second law and find the temperature dependent diffusion coefficients are well fit by an Arrhenius equation giving a diffusion barrier of 300 ±\pm 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2_2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2_2 ices deposited at 11-50 K by temperature-programmed desorption (TPD) and find that the desorption barrier ranges from 1240 ±\pm 90 K to 1410 ±\pm 70 K depending on the CO2_2 deposition temperature and resultant ice porosity. The measured CO-CO2_2 desorption barriers demonstrate that CO binds equally well to CO2_2 and H2_2O ices when both are compact. The CO-CO2_2 diffusion-desorption barrier ratio ranges from 0.21-0.24 dependent on the binding environment during diffusion. The diffusion-desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices

    Three-dimensional calculation of shuttle charging in polar orbit

    Get PDF
    The charged particles environment in polar orbit can be of sufficient intensity to cause spacecraft charging. In order to gain a quantitative understanding of such effects, the Air Force is developing POLAR, a computer code which simulates in three dimensions the electrical interaction of large space vehicles with the polar ionospheric plasma. It models the physical processes of wake generation, ambient ion collection, precipitating auroral electron fluxes, and surface interactions, including secondary electron generation and backscattering, which lead to vehicle charging. These processes may be followed dynamically on a subsecond timescale so that the rapid passage through intense auroral arcs can be simulated. POLAR models the ambient plasma as isotropic Maxwellian electrons and ions (0+, H+), and allows for simultaneous precipitation of power-law, energetic Maxwellian, and accelerated Gaussian distributions of electrons. Magnetic field effects will be modeled in POLAR but are currently ignored

    Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation

    Get PDF
    Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is reconsidered. It is shown that the original expressions for exchange integrals based on the magnetic force theorem (J. Phys. F14 L125 (1984)) are optimal for the calculations of the magnon spectrum whereas static response function is better described by the ``renormalized'' magnetic force theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is confirmed by the {\it ab initio} calculations for Fe and Ni.Comment: 12 pages, 2 figures, submitted to JPC

    Bifurcation analysis of the transition of dune shape under unidirectional wind

    Full text link
    A bifurcation analysis of dune shape transition is made. By use of a reduced model of dune morphodynamics, dune skeleton model, we elucidate the transition mechanism between different shapes of dunes under unidirectional wind. It was found that the decrease in the total amount of sand in the system and/or the lateral sand flow shifts the stable state from a straight transverse dune to wavy transverse dune through a pitchfork bifurcation. A further decrease causes wavy transverse dunes to shift into barchans through a Hopf bifurcation. These bifurcation structures reveal the transition mechanism of dune shapes under unidirectional wind

    No Influence of Ovarian Hormones on Cerebrovascular Responses to the Valsalva Maneuver

    Get PDF
    Cerebral blood flow is modulated in part by arterial perfusion pressure and autonomic neural activity. Valsalva straining drives increases in cerebral perfusion pressure that may challenge cerebrovascular regulatory mechanisms. These challenges may be even greater during the normal menstrual cycle due to vasoactive influences of ovarian hormones. PURPOSE: To test the hypothesis that cerebral vascular responses to Valsalva straining are enhanced with increased plasma concentrations of estrogen and progesterone. METHODS: Twelve healthy eumenorrheic females (mean age 25 ± 1 yr; height 165 ± 3 cm; weight 66 ± 2 kg; mean ± SE) were studied during the early and late follicular (EF and LF) and early and late luteal (EL and LL) phases of the menstrual cycle. We recorded the ECG, beat-by-beat arterial pressure (Finometer), end-tidal CO2, and cerebral blood velocity (CBV) from the middle cerebral artery (transcranial Doppler ultrasound). Plasma ovarian hormone concentrations were assessed with high performance liquid chromatography. Supine subjects strained to an expiratory pressure of 40 mmHg for 15 seconds, and we recorded magnitudes of changes in arterial pressure and CBV. RESULTS: Compared with EF, estrogen was significantly higher during LF (111 ± 20 pg/ml) and EL (113 ± 27 pg/ml) (both P\u3c0.05). During EL (12 ± 6 pg/ml) and LL (7 ± 2 pg/ml), progesterone was significantly higher when compared with EF(1 ± .3 pg/ml) and LF(1 ± .2 pg/ml) (both P\u3c0.05). The magnitude of arterial pressure overshoot at the release of strain (an indirect indicator of peripheral sympathetic neural activation during straining) was significantly higher during LF (54 ± 9 mmHg) compared to EL and EF (both phases = 35 ± 4 mmHg; P=0.003). Changes in CBV during Valsalva straining and during release from strain were statistically identical across menstrual phases (P\u3e0.05). CONCLUSIONS: Despite indirect evidence that sympathetic neural activity during the Valsalva maneuver is increased when plasma estrogen concentrations are high, responses of the cerebral vasculature to Valsalva straining are unaffected by cycling ovarian hormones
    • …
    corecore